SEDs and mid-infrared spectral properties of LoBAL QSOs

Mariana Lazarova¹, Gabriela Canalizo¹, Mark Lacy², Anna Sajina³

¹University of California, Riverside; ²NRAO-Charlottesville; ³Tufts University

Abstract

We present Spitzer IRS spectra and MIPS photometry for a volume-limited sample of 22 SDSS-selected Low-ionization Broad Absorption Line QSOs (LoBALs) at 0.5 < z < 0.6. By comparing their mid-IR spectral properties and far-IR SEDs with those of a control sample of type-1 QSOs, we test the hypothesis that LoBALs are a transition phase from dust-embedded, ultra-luminous infrared QSOs toward unobscured type-1 QSOs. The presence of current star-formation in the LoBAL host galaxies is inferred by the appearance of weak PAHs in one quarter of the IRS spectra. Silicate dust at 9.7 microns is exclusively seen in weak emission in half of the objects, a trend typical of type-1 QSOs. We model their SEDs and decouple the AGN and starburst contributions to the FIR luminosity. As many as 80% of the LoBALs have infrared luminosities comparable to those of type-1 QSOs. However, at least 20%, and as much as 60%, of the LoBALs reside in ULIRGs. The star formation rates (SFRs) corrected for AGN contribution to the FIR flux in most LoBALs are comparable to those found in type-1 QSOs. However, the ULIRG LoBALs have SFRs three times higher than the most star-forming type-1 QSOs. The median contribution of star formation to the total FIR flux in LoBALs is estimated to be 60%, while for type-1 QSOs we find 30%, in agreement with previous results for PG QSOs. Our results show that, while the majority of the LoBALs are similar to type-1 QSOs in terms of their mid- and far-infrared properties, at least some of the LoBALs are characterized by higher infrared luminosities and star formation rates. Statistical tests accounting for the preponderance of upper limits in the FIR fluxes show that the observed differences in the infrared luminosities of LoBALs and type-1 QSOs are statistically significant only at the 1-sigma confidence level, and it is possible that the two samples are drawn from the same parent population.


PAHs

The presence of polycyclic aromatic hydrocarbon molecules (PAHs) is used as a tracer of current star formation (e.g., Genzel et al. 1998).

• 25% (5 of 20) of the LoBALs show weak PAH emission

Composites

S/N-weighted average spectra of the LoBALs, grouped according to shared characteristics. For comparison, non-BAL type-1 QSO average is plotted in gray.

• The mean of all LoBALs shows very weak PAH emission at 6.2, 11.3 and 12.8 µm
• The mean of objects with Lw5–24/λAGN > 2σ shows stronger PAHs than the ‘PAH composite’, suggesting the FIR emission is from star-formation rather than an extended dust torus

Infrared luminosities

Total infrared luminosities are estimated from the SED model integrated from 8 to 1000 µm.

• The LoBALs in our sample are not exclusively associated with ULIRGs (LIR > 10⁹ L☉), a trend found for anecdotal studies of LoBALs are lower redshifts.
• However, at least 20% (and as many as 60%) of the LoBALs are ULIRGs.
• All the non-BAL type-1 QSOs of the control sample reside in luminous IR galaxies (LIR > 10¹² L☉).
• We do not find statistically significant differences between the total IR luminosity of LoBALs and type-1 QSOs.

Starburst luminosities

Starburst luminosities (Lบริษัท) are estimated by summing only the warm and cold components of the model.

• among the FIR-detected objects (~25% in both samples), LoBALs (Lบริษัท ~ 11.5) have higher median Lบริษัท than non-BAL type-1 QSOs (Lบริษัท ~ 11.5);
• if considering the entire samples, the majority of which are dominated by upper limits, LoBALs and type-1 QSOs have comparable medians, Lบริษัท ~ 11.5

SFRs

SFRs are estimated from the starburst IR luminosity using the Kennicutt (1998) relation

• only four LoBALs (20%) have SFRs > 150 - 300 M☉/yr
• the median SFRs of LoBALs and non-BAL type-1 QSOs are comparable at ~50 M☉/yr
• among the objects with FIR MIPS detections, the median SFR of the LoBALs (~145 M☉/yr) is three times higher than in the non-BAL type-1 QSOs (~45 M☉/yr)

Why LoBALs?

• LoBAL = Low-ionization Broad Absorption Line type-1 QSO
• LoBALs are identified by broad, blueshifted MgII 2800 Å absorptions, indicative of gas outflows (~200 km/s).
• LoBALs are rare in optically-selected QSO samples, comprising only 10-30% of the QSOs.
• low redshift (z<0.4) LoBALs are found to be associated with ULIRGs, major merger remnants, and young stellar populations (Canalizo & Stockton 2003)
• The AGN-driven outflows observed in BAL QSOs are a promising candidate for the feedback mechanism which regulates the growth of galaxies and their central black holes, inferred from the observed mass-rotation relationship

Goal

We test the hypothesis that LoBALs are an early, short phase in the evolution of QSOs, a transition from a dust-enshrouded young QSO observed as a ULIRG toward an unobscured type-1 QSO by comparing the SEDs, FIR luminosities, and SFRs of a complete volume-limited sample of LoBALs to a control sample of non-BAL type-1 QSOs.

Conclusions

• While the majority of LoBALs are not statistically different from non-BAL type-1 QSOs in terms of their IR luminosities and mid-IR spectral properties, a fraction of the LoBALs are characterized by much higher starburst luminosities.
• In the context of an evolutionary paradigm, this would imply that LoBALs are rapidly transitioning from a ULIRG phase to a more quiescent phase with star formation activity typical of type-1 QSOs.

Coming up soon...

• HST/WFC3 images of this entire sample reveal that most of the host galaxies have undergone a recent tidal interaction
• Keck LRIS spectra of at least some of the host galaxies show Balmer absorption lines, indicating dominant post-starburst stellar populations; we have obtained spectra of seven hosts and proposed for the rest of the sample

This work is based on observations made with the Spitzer Space Telescope (Program ID 8012), which is managed by the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA. Support for this work was provided by NASA through an award issued by JPL/Caltech. Additional support was provided by the National Science Foundation, under grants number AST-0507369 and NASA through a grant from the Space Telescope Science Institute (Program ID 8012), which is operated by the Association of Universities for Research in Astronomy, Incorporated, under NASA contract NAS5-26555.